Как «вынести минус»?

Давно ничего не писала и хотела писать совсем о другом, но попросили объяснить быстро алгебраические дроби. Я быстро не могу, вы знаете. Спросила, с чем конкретно помочь. Оказалось, не понимает как «выносить» минус и менять слагаемые в скобках местами. Переодически объясняю детям, но сейчас  ВПР и надо было «ещё вчера». Заодно и сюда решила написать, не знаю  почему, но тема с минусом возникает постоянно.

Диалог выглядел с ребенком так:

—  Здесь можно сократить, правда?

—  Ну… тут знаки разные, надо тогда этот, как его, минус выносить.

—  Давай вынесем.

—  Там сложно.

—  Сложно?

—  Ну … там, короче, надо вынести минус. Берем минус, ставим, и там знаки все меняются в скобках. Но там …это…. Там то минус, то плюс, вообще непонятно от чего зависит. То есть когда просто в скобках плюс, то понятно, ставишь там перед скобками минус и всё, сразу всё меняется. А вот если не плюс, или там просят буквы эти местами поменять.

—  Но здесь понятно? Здесь же  + (a+b).

—  Ну да, здесь легко. Берешь минус, выносишь и ставишь перед скобкой первой и в скобках минус сразу. То есть здесь вот тогда будет — (a — b)

—  Точно будет — (a — b)?

— Да, знак поменяется. Мы поэтому минус и выносим, чтобы он поменялся.

— Он так меняется? Уверен?

— Ну да.

—  А если мы раскроем скобки и проверим? Мы получим снова + (a+b)?

— Не, а зачем проверять? Там точно минус должен быть. Потому что ставишь минус перед скобками, и он меняет знак в скобках сразу.

—  Хорошо. А где ты его берешь?

— Кого?

—  Ты сказал «берем минус и ставим перед скобкой». Минус. Где ты его взял?

— Ну как… из скобок.

— Давай посмотрим на скобки. Где он?

Ребенок озадачено смотрит на скобки.  На + (a + b).

— Не… ну, мы берем минус и ставим перед скобкой, да.

— Это я поняла. А откуда берем? Ты ведь говорил, что мы выносим минус из скобок?

— Из скобок. У нас там получилось — (a — b), видишь. Вот мы этот минус и вынесли.

—  Но ведь этот минус в скобках получился у нас уже после? Когда мы уже поставили минус перед скобками и знаки поменялись. Как же мы могли его вынести? Там был плюс. И если ты заметил, знак у тебя поменялся почему-то только у b

— Почему только у b? Это же их общий знак, он между ними стоит. 

— Понятно. И минус мы берем ниоткуда? Вынули минус из кармана и поставили перед скобкой?

— Нет, он из скобок.

— Но там плюс.

— Ну да… а откуда мы его берем?!!

И на этом мы принялись изучать алгебраическое сложение (см. предыдущий пост). А потом разбирались:  откуда же взялся минус?

-a = (-1) · (+a)

-b = (-1) · (+b)

-a = (+1) · (-a)

-b = (+1) · (-b)

+a = (+1) · (+a)

+b = (+1) · (+b)

+a = (-1) · (-a)

+b = (-1) · (-b)

Вот так мы можем разложить каждое число. Не только а и не только b,  и не только -a и -b, как полагают многие дети. Подставьте на место этих букв любые другие (если вы работаете с буквами). Например, с.

-c = (-1) · (+c)

-c = (+1) · (-c)

+c = (+1) · (+c)

+c = (-1) · (-c)

Подставьте числа (если у вас в выражении не буквы, а числа). Например, 12.

-12 = (-1) · (+12)

-12 = (+1) · (-12)

+12 = (+1) · (+12)

+12 = (-1) · (-12)

Да, вы имеете полное право тяжело вздохнуть и спросить: «И зачем это? Ведь очевидно, что a и b можно заменить на любые числа и буквы». Могу сказать только одно, вы не представляете, скольким детям (иногда и взрослым) это неочевидно и на вопрос: «Как мы можем представить -15? Видишь мы с тобой тут писали пару минут назад, что — а можно представить в виде произведения», тебе отвечают: «Не знаю… ну, то есть я знаю, что мы можем -а представить, но вот -15…даже не знаю. А как представить?»

Давайте начнем с примера, который я написала выше. Предположим, у вас есть выражение a + b, оно заключено в скобки. И перед скобками стоит знак плюс. А вам очень нужно по каким-то причинам, чтобы перед скобками стоял знак минус, а в скобках знаки букв или чисел стали другими. Проще говоря, вам нужно «вынести минус». Как поступим?

Да, я знаю, можно умножить на минус единицу. Но часто после этого как раз и происходит, что + (a + b) превращается в — (a — b).  Знак первого слагаемого «теряется».

Поэтому сделаем так. Возьмем уже упомянутое + (a + b) и поменяем в нем знак (вынесем минус). Для этого мы возьмем каждое из слагаемых (каждое число в скобках) и представим его в виде двух множителей, например:

представим а как (-1) · (-a), ведь два отрицательных числа дадут нам в итоге положительное, верно? Представим b как (-1) · (- b) и посмотрим, что нам с этим делать. Расписывать подробно не буду, в качестве иллюстрации использую «памятки», которые ребенок делал для школы.

Кстати: не забывайте, что плюс перед скобкой — это (+1) и когда мы «выносим» минус (то есть минус единицу — общий множитель), то нам нужно их перемножить. Именно результат этого умножения (+1) · (-1) дает нам знак перед скобкой (см. рисунок ниже).

minus_3

Теперь рассмотрим вариант + (a — b), но мы же помним, что на самом деле в скобках не разность, а алгебраическая сумма  + ((+a) + (- b)). Если не помним, то смотрим ещё раз пост про алгебраическое сложение. Каждое из слагаемых этой суммы мы представим в виде произведения.

(+а) как произведение (-1) и (-а)

(-b) как произведение (-1) и (+b)

minus_4

Теперь рассмотрим вариант — (a + b),  мы помним, что в скобках алгебраическая сумма — ((+a) + (+ b)).  Каждое из слагаемых этой суммы мы представим в виде произведения.

(+а) как произведение (- 1) и (- а)

(+b) как произведение (-1) и (- b)

minus-5

И еще один вариант — (a — b),  мы помним, что в скобках алгебраическая сумма — ((+a) + (- b)).  Каждое из слагаемых этой суммы мы представим в виде произведения.

(+а) как произведение (- 1) и (- а)

(- b) как произведение (-1) и (+ b)

minus_1

Возможно этот способ подойдет не всем, ну, что могу сказать, есть много других. Он кажется немного сложным, но после небольшой практики, все эти действия (разложение чисел) можно легко выполнять в уме. Главное, понять суть.

 

 

 

 

Алгебраическая сумма и разность (для родителей)

для Ирины

«И какой тут знак тогда?» — возмущенно сказал один из моих учеников, когда уже после урока английского, у нас зашла речь о его домашнем задании по математике. Он собирал свой комплект Starlight, и неожиданно выпала тетрадь по математике. «Ещё математика же!» — яростно воскликнул ребенок, который как раз описывал мне, сколько ему на сегодня и на завтра задали (чтобы избежать диктанта на следующем уроке, я так подозреваю). «А что математика?» — спросила я. «Ну вот же!» — он раскрыл тетрадь и ткнул пальцем в задание. «Приведите подобные слагаемые. Я вообще не понимаю, реально. Я сложил, учительница говорит, нет, здесь минус должен быть, а сама говорит, что подобные слагаемые складываются. Я её спрашиваю, они складываются? Да, говорит, всё правильно, складываются, поэтому здесь будет минус. Ничего не понял. Вот здесь пример. И какой тут знак тогда?» Продолжить чтение «Алгебраическая сумма и разность (для родителей)»

Действительные числа

«Строили мы, строили и наконец построили», — как сказал когда-то Чебурашка. Ребенок доделал свою памятку по действительным числам. Осталось еще кое-что вписать в «раскладушки».

«Окошко» под «раскладушкой» обычно оставляем пустым (вдруг захочется еще что-то добавить).

_действительные числа_1

_действительные числа_4

_действительные числа_3

_действительные числа_2

Координатная плоскость. Для запоминания.

Рисовали, чтобы запомнить понятия для координатной плоскости. Так что это для запоминания. Для объяснения лучше всего подходит асфальт. Понадобится кусок мела (если есть несколько цветов, то ещё лучше), желание рисовать и плоская жестяная банка (у нас была от крема «Нивея» (давно это было, ещё в четвертом классе).

Мел для того, чтобы нарисовать оси и разметить точки, а банка для того, чтобы играть  (подобие игры «классики»), прыгая с одной точки на другую. Фото нет, да оно и не нужно. Для такого объяснения нужна только хорошая погода.

А для запоминания делали вот это.

Рисунок 1.

плоскость_3

Рисунок 2.

плоскость_1

Рисунок 3 (общий план).

плоскость_2

Длина окружности. Увеличим радиус, что будет?

Решали задачу. Попросили выложить. Выкладываю.

Итак, условие задачи: Как изменится длина окружности, если её радиус увеличить в 3 раза?

Решение (на рисунке оно тоже есть, выложу в конце).

С = 2πR = πd

C (новая окружность с увеличенным радиусом) = 2 • π • 3R = π • 6R = π • 3d = 3πd (следовательно длина окружности увеличится в 3 раза)

И поэтапно.

Жила была окружность. Самая обычная.

IMG_1851

Измерим её длину. Не в цифрах, просто, чтобы у нас было на чем показывать решение (значения вы потом можете подставить любые). Можно измерить ниткой или бумажной лентой, как мы делали здесь. Для разнообразия возьмем «шнурок» из пластилина.

IMG_1852

Вот она — длина окружности.

IMG_1853

«Разрежем» нашу окружность.

IMG_1854

И как мы уже делали вот в этом посте, разделим ее длину на три диаметра и небольшой «хвостик». Мы же знаем, что в длину окружности диаметр умещается примерно 3,14 раза (число π), то есть в длину любой окружности умещаются примерно три диаметра этой же окружности и еще примерно 14 сотых диаметра это же окружности. На самом деле больше 14 сотых. Ведь есть еще тысячные, десятитысячные и продолжать это дробление можно бесконечно, мы же помним, что π — иррациональное число. Но обычно мы округляем его до 3,14 (округляем до сотых). Поэтому  и можем сказать, что умещается примерно 3 диаметра и 14 сотых частей диаметра.

IMG_1857

Разделили.

IMG_1858

Мы же помним, что диаметр равен двум радиусам? А ведь увеличивать нам придется именно радиус. Как нам его получить? Разделим диаметр на две равные части.

IMG_1864

Разделили.

IMG_1865

Продолжить чтение «Длина окружности. Увеличим радиус, что будет?»

Число π. Как показать?

Думаю, этот прием известен многим со школьных времен. Но всё же напомню.

Итак, число π. Как мы знаем, число π представляет собой отношение окружности к диаметру. То есть

IMG_1811

Мы можем написать это и по-другому:

IMG_1812

Что мы узнаём при делении? Мы узнаём, сколько раз делитель (число, на которое мы делим) умещается в делимом (в числе, которое мы делим). Или во сколько раз делимое больше делителя и во сколько раз делитель меньше делимого.

Это означает, что мы узнаем, сколько раз диаметр укладывается в длину окружности.

Или можно сказать: мы узнаем, во сколько раз длина окружности больше диаметра.

IMG_1814

То есть длина любой окружности будет примерно в 3,14 раза больше, чем диаметр этой окружности. А диаметр окружности будет примерно в 3,14 раза меньше, чем длина этой же окружности.

Теперь посмотрим, как это выглядит.

Для этого нам понадобятся:

1) круглая крышка ( у меня от контейнера с ватными палочками, такие есть в любом доме). Важно, чтобы крышка не сужалась и не расширялась. Подойдет и любой другой предмет, который мы можем принять за круг.

2) полоска бумаги, достаточно длинная, чтобы можно было обернуть крышку.

3) ножницы, карандаш, линейка.

IMG_1793

Продолжить чтение «Число π. Как показать?»

История. Карточки вместо временной ленты.

На вкус и на цвет… сами понимаете. Поэтому пользу временной шкалы я не отрицаю. Но постепенно перешли на карточки. В этом году проходим сразу два курса: история Средневековья и история России. Карточки оказались удобнее, так как их можно раскладывать по векам, странам или последовательно, как ленту времени (в рамках конкретного курса). И удобнее оказалось заучивать даты. С одной стороны пишем (или наклеиваем) дату или исторический период, с другой — событие. Обычно когда проходим параграф, сразу вносим все даты, которые в нем имеются, в вордовский файл. Когда событий накапливается на целую страницу, распечатываем, делаем карточки и добавляем к уже имеющимся. Перед зачетом — повторяем.

для-истории.jpg

Таблица умножения

Не так давно в сообществе учителей в соцсети Facebook меня попросили написать о закономерностях таблицы умножения. Подробно с картинками написать сейчас все равно не хватит времени, поэтому даю ссылку на статью, которую нашла давным-давно, когда только осваивали счет. В школе она нам пригодилась.  Есть еще одна закономерность, которую мы с детьми выявили уже позже, после начальной школы, завтра нарисую и выложу отдельным постом.

Здесь ссылка на шаблон для заполнения таблицы умножения.

Десятичная дробь. Часть 14. Деление положительной десятичной дроби на 0,1; 0,01; 0,001 и так далее.

Пост все равно получился длинным, но что поделаешь.

Итак, умножение мы обсудили здесь. Перейдем к делению. Также как и в случае с умножением, у нас возникает вопрос: в чем дело? Я делю, казалось бы, дроблю число на части, а в результате получаю большее число.

Давайте вспомним, что такое деление. Это сокращенная запись вычитания. Можно взять число 15, например, и последовательно вычитать из него 3, до тех пор пока мы не получим нуль.

Рисунок 1

на одну десятутю_1

Но мы не пользуемся только маленькими числами. Если мы решим последовательно вычитать число 3 из числа 333, чтобы понять сколько раз число 3 «помещается» («укладывается») в число 333, то рука устанет писать тройки. Для того, чтобы записать это действие кратко и существует деление. Продолжить чтение «Десятичная дробь. Часть 14. Деление положительной десятичной дроби на 0,1; 0,01; 0,001 и так далее.»

Десятичная дробь. Часть 13. Умножение положительной десятичной дроби на 0,1; 0,01; 0,001 и так далее.

Эта тема тесно связана с тем, что мы уже изучили, с умножением и делением десятичной дроби на 10; 100; 1000 и так далее. Если забыли, вам сюда. Сейчас объясню почему тесно связана.

Умножение числа на 0,1; 0,01; 0,001 и так далее.

Часто возникает вопрос: почему, когда мы умножаем число на 0,1; 0,01; 0,001 и так далее, число становится меньше? Ведь мы же умножаем. При умножении число обычно становится больше, разве нет?

Давайте разберемся. Для этого нужно вспомнить, что такое вообще умножение. Это сокращенная запись сложения. Когда людям надоело писать двадцать пятерок подряд и последовательно их складывать, они решили записывать это кратко.

Предположим, нам нужно умножить пять на пять. Что это  значит?

на одну десятую

Для тех, кто лучше понимает, когда видит не числа, а картинки.

на одну десятую_3

Сначала хотела сделать общий пост, в котором было бы и умножение, и деление на 0,1; 0,01; 0,001. Но получается слишком длинно. Поэтому продолжение следует. О делении в следующем посте.